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J .  Phys. A:  Gen. Phys., 1971, Vol. 4. Printed in Great Britain 

Statistical model of solids 

N. K. MARTINOV and N. A .  NIKOLOV 
Department of Physics, Lniversity of Sofia, Sofia, Bulgaria 
MS. received 26th May 1970, infinal form 8th January 1971 

Abstract. A plasma model of solids is proposed. I t  is shown that, in the 
presence of a local dynamic equilibrium in a steady-state electronic-ionic 
plasma, a spatially periodic selfconsistent potential can exist leading to a 
periodic structure in the solid-state plasma. Calculations for the period of the 
crystal structure of a number of metals with cubic (face-centered) and hexagonal 
symmetry are performed. The work function of some metals with cubic 
(face-centered) symmetry is also calculated. The results obtained are compared 
with the corresponding experimental data. 

The  well known models, describing the structure of an electronic gas in solids, 
are usually based on a preliminary assumption of the arrangement of their atoms or 
ions. In  this sense, the behaviour of the electronic gas is determined by the availability 
of the periodic potential given in advance. In  the present work an attempt is made to 
show that in fact the periodic potential can be induced by the selfconsistent Coulomb 
interaction of the two components of the electronic-ionic gas in solids. 

As in our two previous papers (Martinov et al. 1969, Martinov and Nikolov 1971) 
dealing with the problem of the steady-state spatial structure of a gas plasma, the 
model discussed presently will again be based on the assumption of a local equilibrium 
of the field and statistical factors (Vlasov 1966). This means that the spatial distribu- 
tions of the two components of the electronic-ionic gas are determined by the self- 
consistent potential of the system which, in turn, is determined by the distributions 
of the electrons and ions themselves. The  velocity distributions of the particles are 
assumed to be of the Maxwell type; the system is in thermodynamic equilibrium and 
the Fermi temperature will formally be used as the average temperature of the 
electronic gas. 

The  steady state of the electronic-ionic gas in the present model will be determined 
by the following equations-equations for a local dynamic equilibrium, equations 
of state and field equations: 

Aq(T(e7)) = - 4 n e p , ( ~ ( e ~ ) )  +4rrep, (~(e~) )  

P I ( T ( e 7 ) )  = 4%(T(eT)) P d $ E T ) )  = @,(T(eT)) 

where subscripts 1 and 2 refer to the ions and the electrons respectively; pi(T(eT)) are 
the spatial distributions of the particles (the probable ones), 9;(T(eT)) is the probable 
self-consistent potential, 0 is the average Fermi temperature (8 = $&f) and e is the 
elementary electronic charge. The  above system refers to singly charged positive ions. 
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We shall look for spatially periodic solutions to equations (1) under the following 
boundary conditions : 

q(T(er)  = 0) = y(0) 

y(x = L ,  0,O) = y(0) 

Pl(T(e7) = 0) = Pl(0) 

p2(7 (er )  = 0) = P 2 ( 0 )  (2) 
where L is the size of the system along the OX-axis. 

state spatially periodic solutions for p(T(e7)) and pi(r(eT)) of the type: 
As shown by Martinov and Nikolov (1971), the above system possesses steady- 

0 0  iT  

e e  D v(T(er) )  = - x - - Intan2 (- (x +y + 2) + tan -1 e l / z j  + T(O) 

02(T(er)) = p(0) cot2 ( x + y + z )  + tan-I e%/2 

where 
( 3 )  

Here the quantity D is the spatial period of both the selfconsistent potential and the 
distributions of the electrons and the ions, that is, D determines the parameter of 
the unit lattice cell in the case of an fcc crystal structure. The  calculated period D 
in the model proposed is considered as the distance between those points in the 
coordinate space in which the localization probability is maximal. From (4) one can 
see that the spatial dimension is approximately ten times greater than the respective 
Debye radius of screening. 

Besides the solutions (3) referring to the case of an fcc lattice, equations (1) allow 
periodic solutions describing an orthogonalized hexagonal symmetry, that is, with 
a selfconsistent potential of the form 

Here a and c are the parameters of the hexagonal crystal lattice related to the spatial 
period D in the following way (Kittel 1956) : 

a = 0.725 D 
b = a1/3 
c = 1.186D 

where the value 1.633, characteristic of the hexagonal symmetry, is assumed for the 
ratio cla. 

As can be seen from equations (4) and (6 ) ,  the lattice parameters for fcc and 
hexagonal symmetry are determined solely by the mean Fermi temperature (%gf). 
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fcc 

A1 
Au 
Ca 

c u  
Pd 
Pt 
Pb 
4 2  
Sr 
Ce 

Lab 

hex 

Be 
Gd 
Cd 
CO 
Mg 
T e  
Ti 
Zn 
Xi 
os 

LaN 
CZ 3 

4-4 
exP 

4-04 
4.07 
5.56 
5-29 
3.60 
3.88 
3.91 
4.94 
4.07 
6.05 
5.14 

44 
exP 

2.27 
3.62 
2.97 
2.51 
3.20 
3.45 
2.95 
2.66 
2.60 
2.73 
2.72 
3 -75 

Table 1 

D ( 4  
theor 

4-25 
4.30 
5 -00 
4-92 
4.13 
4.20 
4-21 
4.72 
4.32 
5.22 
4.84 

Table 2 

CCQ 

exP 
3.59 
5 -75 
5.61 
4-07 
5.20 
3 - 5 1  
4.73 
4.94 
4.15 
4.58 
4.42 
6.06 

A(eV) 
exP 

4-20 
4.71 
3.20 
3.30 
4.48 
4.98 
5.36 
4.04 
4.70 
2.74 
2.88 

a@) 
theor 

2.68 
3.48 
3.29 
2.88 
3.27 
3.39 
3.13 
3.06 
2.90 
3.01 
2.94 
4.32 

A(eV) 
theor 

3-86 
3-82 
2.07 
2.30 
4.85 
4.18 
4.1 2 
2.59 
3.82 
1 *73 
2-44 

c ( 4  
theor 

4.38 
5.68 
5.37 
4.70 
5.33 
5.53 
5.12 
5.00 
4.74 
4.92 
4.80 
7.05 

Tables 1 and 2 present the experimentally measured lattice parameters 
(Landolt-Bornstein 1955), as well as those theoretically calculated by us, for a 
number of metals of the fcc and hexagonal symmetry respectively. 

Bearing in mind the second boundary condition for the potential and equation (3) ,  
it can easily be seen that 4;(0,3', z) = y ( L ,  31, x) if the size of the system along the 
OX axis consists of an integral number of spatial periods, that is, L = ZD(Z = 1, 2, ...). 
Similar considerations apply for the other two directions, which must also consist of 
an integral number of corresponding spatial periods. 

Equations (3) make it possible to calculate the electronic work function. For 
this purpose the selfconsistent potential must be suitably cut off only at the points 
where it tends to infinity and where the electronic density is infinite. The  cut-off will 
be made in a region of the order of magnitude of the classical electronic radius T ~ ,  so 
that in these regions the probable electronic density will now possess a maximal but 
finite value. Having in mind the expression for the selfconsistent potential y ( ~ ) ,  
and assuming that the mean density of the ions is equal to that of the electrons 
(p,(O) = p z ( 0 )  = p ( O ) ) ,  one obtains for the potential energy of the electrons on the 
bottom of the potential well : 
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The work function A of the electrons is determined by their mean potential 
energy and the averaging is performed in the potential well of the electrons. Figure 1 
represents the shape of the electronic potential well. The  theoretical calculations for 
A for metals of an fcc crystal structure, together with the experimentally measured 
ones (Landolt-Bornstein 1955), are given in the last two columns of table 1. 

X 
3 0 / A  731 8 

Figure 1,  

The problems of the localization and the spatial periodic structure of the 
solid-state particles can be solved correctly only by means of quantum-mechanical 
considerations. The  difficulties arising from such a treatment are well known. That is 
why the present work proposes a considerably simpler, although not yet sufficiently 
developed, model in which hydrodynamics is used for an account of the strong 
interactions between the particles ; the quantities pi(.(ei-)) are the particles’ probability 
distribution functions. 

It is interesting to mention that Zachariev et al. (1971) have shown that the most 
favourable thermodynamic state-the one of minimum internal energy-of an 
electronic-ionic gas will be attained provided (i) the field equation is of the form 
Ap; = const x sinh y and (ii) the particle distributions satisfyp,(.(eT)) p2(7(ei-)) = const. 

It may be seen that both conditions hold good in our model. Moreover, the 
above mentioned work shows that the state of an electronic-ionic gas with a homo- 
geneous distribution of the particles and ? = 0 is of higher energy than the periodic 
state considered here. 
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